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A Model for Inferring Components of Belief Systems

By Interpreting the Content and Context Cues

Used by Students to Situate Mathematical Tasks

When students come to a mathematical task their first action

is to assign meaning to the task based on their experience and

knowledge of the content and context of that task. Part of the

process of assigning meaning is to determine whether or not the

task is mathematical. When students situate tasks1 in the

mathematical domain they cue on the content and context features

of the task. Their belief systems determine what content and

context cues they attend to. Thus, these belief systems affect

how students solve problems and how students think about

mathematics (Schoenfeld, 1988; Underhill. 1988).

But it is not enough simply to say that belief systems

affect what students attend to (Ginsburg & Asmussen, 1988;

Schoenfeld, 1985). To make effective use of those systems,

educators need delineations of the components of the systems, as

Thompson (1988) has provided for teachers' belief systems. Our

assumptions about the interaction of beliefs and cognition

parallel Thompson's: that notions and beliefs are implicit in

responses to questions or issues related to mathematical tasks

and thus can be identified and described; that some beliefs

1 Here we intend the meaning of situated knowledge to be
similar to how Lave (1988) and Brown, Collins, & Duguid (1989) use
the term, except that we are considering the way that knowledge is
situated just in the domain of mathematics rather than the whole
sphere of situated knowledge.
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impede effective and efficient mathematical understanding and

performance; and that eventually we may be able to modify

instruction based on knowledge of the components of the belief

systems.

In this paper, we present a model for inferring the positive

and negative components of students' belief systems by

interpreting the content and context cues that they use to

determine when to reach for their mathematical toolbox. We

anticipate that work in identifying the components of students'

belief systems will be the basis for successful modification of

instruction just as knowledge of how students learn has been used

successfully to modify instruction. For example, the Cognitively

Guided Instruction Project reported positive results when

teachers were trained and encouraged to use their knowledge of

students' learning of addition and subtraction to make

instructional decisions (Carpenter, Fennema, Peterson, Chiang, &

Loef, 1989). An analysis of the components of students' belief

systems, therefore, should enable educators to help students

reconstruct their belief systems by building on the positive

components and building around the negative components.

The Model

The overall scheme of the model for inferring components of

students' belief systems by interpreting cues of situated

mathematical tasks (ICSMT) is shown in Figure 1. The top portion

of the model is an extension and adaption of the student portion

of a model for research and curriculum development presented by
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Fiaure I. A model for inferring components of students' belief systems by

interpreting cues of situated mathematical tasks (ICSMT).
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Carpenter and Fennema (1988). The top portion of the model

depicts the students' processing of the task showing that

theihecisions about situating that task are affected by their

mathematical knowledge and belief systems. The bottom portion of

the 1CSMT model depicts the process that may be applied to

interpret the students' rationales for situating tasks. The

students' rationales for classifying a task as mathematical are

analyzed, clustered, and separated into content cues and context

cues. These cues are then analyzed and clustered, and the

cluster used to infer components of students' belief systems.

The term "content" is used here much as Kulm (1984) uses it

as a label for a category of task variables. So by "content" we

refer to mathematical meanings of the situation. This would

include, for example, the content area or strand (measurement,

probability, and geometry), type of operation involved, and the

complexity of the problem (single step, multi-step). Unlike

Kulm, we include syntax (symbols, terms, and the size or type of

the number) as part of content.

By "context" we refer to nonmathematical or incidental

meanings in the situation as described by Webb (1984) where:

...the context refers to the fum of the problem

statement. "Form" is interpreted very generally to

include: (1) variables describing the problem

embodiment or representation, (2) variables describing

the verbal context or setting, and (3) variables

describing the information format. (p. 69)

6
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We extend our use nf context to include aspects that are not

observable in a task, for example, where and when a concept or

process was learned.

Identifying Components of Student Belief Systems

In our application of the 1CSMT model, we asked students to

provide rationales for situating a task in the mathematical

domain. In a series of studies (Kouba & McDonald, 1987; Kouba &

McDonald, in press; McDonald & Kouba, 1986) we gave 2,703 K-8

students a set of situations and asked them to identify whether

each involved mathematics and to explain their answers. Sample

situations are shown in Figure 2. We identified patterns in the

most frequent response types. These patterns were verified by

classroom teachers, mathematics educators, and mathematicians.

We examined the responses within each pattern to identify what

the students were cueing on and categorized those as content or

context cues (see Figures 3 and 4).

The components of the students' belief systems were inferred

from straightforward statements of beliefs and implied statements

of beliefs expressed in the rationales grouped under each content

and context cue. The straightforward statements of belief

included such expressions as, HIt's math because there are

numbers and numbers are math." The implied statements of belief

included such expressions as, "It's not math because it doesn't

have a problem part," which we interpreted as a belief that

nathematics consists of problems of a particular form and

presentation. The components then were classified as being

7
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I. Alan took out his ruler and measured his desk.

2. Leslie said when she rolled the two dice that the numbers

would more likely add to seven than to twelve.

3. Raphael studied the two cornfields to see if the distance

around their borders could be the same if the shapes were

different.

4. In gym class Ryan drew diagrams to show the changes in his

heartrate before and after exercising.

5. Natalie helped her mother decide how much carpet they should

buy for the livingroom.

6. Ellen read a book about trees.

7. Melanie had to tell the teacher which was greater, 5 or 3.

8. Fran told the teacher which figures were squares in the

picture on the page and which were not.

Figure 2. Sample situations used to elicit rationales for

situating mathematical tasks.
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Figure 3. Content cues and inferred positive and negative belief

components.
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Figure 4. Context cues and inferred positive and negative belief

components.
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either positive or negative and expressed as statements that are

building blocks for belief systems (see Figures 3 and 4). By

positive we imply that the belief is one which would commonly be

held by mathematicians and mathematics educators. By negative we

refer to misconceptions or incomplete conceptions of mathematics,

which might impede effective or efficient mathematical

understanding or performance.

Content Cus. We first identified pairings of positive and

negative components of belief systems for each set of content

cues used by the students (see Figure 3). What follows is a

discussion of the implications of those belief components.

The presence of numbers is a cue used frequently by the

students in our studies to determine whether or not a situation

is mathematical. Although it is important to recognize that

numbers play a significant role in mathematics, identifying

numbers as a necessary and sufficient condition for recognizing a

situation as mathematical causes some students to see numbers as

the only products of mathematics. Students who focus on numbers

fail to see other mathematics when numbers are not rresent or

fail to go beyond the number when numbers are just superficial

components. As a result, these students fail to identify

geometry, probability, or complex, multi-level tasks as

mathematical.

This narrow view of mathematics may have a debilitating

effect on students' mathematical performance. In Cobb's (1985)

study of two children's problem solving, one child, Scenetra,

11
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appeared to be so bound by her focus on numbers and numerals

themselves that she was unable to solve problems that relied on

the analysis of relationships and patterns of relationships among

numbers.

The presence or absence of arithmetic operations is a second

primary content cue used by students to situate a task in the

mathematical domain. Focusing on operations (also noted by

Frank, 1988 and Joffe & Foxman, 1984) may further limit the

students, ability to recognize the presence of non-arithmetic

mathematics. It also may limit their repertoire of problem-

solving strategies. Rather than try to make sense ..7.f a problem,

these students may try to reduce problem solving to just the

identification of an operation. The prevalence of such immature

strategies has been described by Sowder (1988).

A third content cue used by students is the presence of

charts, diagrams and other forms of data presentation. Students

who persist in recognizing mathematics in situations where

charts, diagrams, and graphs are present but numbers are not

explicit apparently include these representations of data as

tools in the mathematical domain. Students who do not recognize

charts, diagrams, and graphs as tools belonging to the

mathematical domain may believe that representations of data are

merely descriptive. As mere descriptions, these representations

may not be viewed by the students as providing data to which

mathematical operations can be applied. This rejection of the

data as something that can be operated on mathematically may

12
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explain students' poor performance on data analysis portions of

national assessments of mathematics (Brown, Carpenter, Kouba,

Lindquist, Silver, & Swafford, 1988; Kouba, Brown, Carpenter,

Lindquist, Silver & Swafford, 1988) and therefore warrants

further research.

Students who include mathematical strands (a fourth content

cue) which go beyond numbers and operations have a broader and

possibly more integrated view of mathematics as has been

recommended by the Standards (NCTM, 1989). For students who

exclude strands other than numbers and operations, mathematics

becomes synonymous with arithmetic. These students can look at a

situation, see and even name strands other than numbers and

operations (e.g. probability, geometry, or measurement), yet they

reject such strands as being mathematical. As a consequence,

they are as limited as those students who don't look beyond the

numbers.

A fifth content cue is the presence of mathematical terms.

Students who identify a situation as mathematical because of the

terms that are used are acknowledging that those terms have

mathematical definitions. Such an acknowledgement is a

prerequisite to understanding that mathematics is a language.

Treating mathematics as a language enables students to develop

the linguistic networks and registers (Halliday, 1978) which are

helpful in analyzing problems, making mathematical sense of

situations, and making choices of algorithms or procedures.

Acknowledging that certain terms have precise mathematical

.!3
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meanings is, however, different from focusing on those terms in

isolation. Isolating terms may lead students to respond

inappropriately to mathematical situations. This rote reliance

on "key word" analysis has been described and criticized at

length (Nesher & Teubal, 1(175; Schoenflld, 1982; Sowder 1988).

Recently Stockdale (1991) Aalyzed a sample of current textbooks

and found that the language of word problems has been changed so

that tte use of a rote "key word" strategy will no longer yield a

high performance score. This may help in preventing the coming

generation of students from developing a belief that rote use of

"key words" is a "good" strategy.

A sixth content cue category is the nature of the process

and product in mathematics. Believing that mathematics is more

than just finding answers enables students to expand their domain

of mathematics to include such processes as estimating,

comparing, and finding patterns. These processes are effici^nt

tools for making connections from one problem situation to

another and from one mathematical c:ontext to another. In Cobb's

(1985) study of two children, the child who was able to focus on

processes and to view mathematics as more than just finding a

numerical answer was more able to solve novel problems. Borasi

(1990) has identified four dysfunctional mathematical beliefs

that she links to product and process and explains how these

beliefs not only result in misconceptions but also lead to a

dualistic view of mathematics.

Students for whom the process of mathematics must result no,

14
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just in finding answers but in finding one ric:.t answer appear to

fixate on the final product. Frank (1988) and Borasi (1990)

describe how this focus can transloaze to a dicl.otor'zed view of

mathematics as being either completely right or complately wrong.

Here the process is not only ignored, but is also viewed as

valueless if the product is e,ctermined to be wrong. Ginsburg and

Asmussen (1988) identify students who '&)elieve the process to be

"thoughtless," with the right answer derived either through

computation or memory.

Other students attend to the process, but hold the view that

it must be a:. active one; the action involved being limited to

physically performing calculations. Active does not mean

intellectually engaged or using manipulativ t means using

paper and pencil to write out calculations. Ginsburg and

Asmussen (1988) describe children who view reasoning about a

problem as cheating and who would perform tedious computations

even if they could eliminate them by applying reason or

understanding of the mathematical principle.

A final content cue used by students to situate mathematical

tasks is the perceived level of complexity or difficulty of the

task. When the processing related to the situation is considered

to be automatic or the content of the situation is considered to

be easy or already known, some students refuse to consider the

situation mathematical. This view of mkAthematics as an "upwardly

shifting domain" may have a direct effect on students' confidence

in their ability to do mathematics because mathematics becomes,

1 5
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by definition, only that which is hard or unknown. While we

know that it is important that students automatize we must he

aware that for some students reaching a level of automization or

the development of number sense may result in the devaluing of

those abilities. Likewise, common sense and considering the

reasonableness of solutions may noti)tperceived as mathematical.

It is possible that when we deny students their "fall back"

strategies of counting on their fingers or the early strategies

in Siegler and Shrager's (1984) model of strategy choice, we may

be fostering the belief that those strategies are not

mathematics. This, in turn, may limit the student's repertoire

of strategies and thus, their flexthility in solving problems.

Ginsburg and Asmussen (1988) describe their analysis of a thirty-

year old woman's (Jessica) mathematical processing. In studying

Jessica they found that her performance was adversely affected by

the belief that mathematics must always be done with hard,

complex algorithms. The simple arithmetic and measuring that she

could do well, she did not consider to be mathematics. She

therefore neither gave herself credit for the mathematical skills

that she had nor did she use them.

Context Cues. We next identified pairings of positive and

negative components of belief systems for each set of context

cues which were used by the students in our studies (see Figure

4). Below we discuss the implications of those belief

components.

Students often use the form or presentation of a problem to

16
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situate a mathematical task. Students who can categorize

problems and match them to effective solution strategies are more

likely to be able to solve problems. However some students become

too rigid in setting their parameters for what constitutes a

mathematical problem and fail to recognize mathematics in

anything but "textbook-like" situations. Thus, they lose the

opportunity to use mathematics to make sense of situations

(Kaput, 1989) that cannot be readily "typed."

For some students the form is all that is important. As

long as there are two or more numbers and a question that calls

for a numerical answer the students perceive the problem as

mathematical and will process the numbers even if the problem

makes no sense (Schoenfeld, 1988).

A second contextual cue used by students is the location

where mathematics is learned or applied. This includes the

actual physical location where the mathematics is learned, such

as the mathematics classroom, as well as the contextual location

in which mathematics problems are placed, i.e. "real world"

problems versus non-applied problems, or mathematics problems

versus science or social studies problems.

Students who focus entirely on the physical environment in

which the learning has taken place are unlikely to be able to

transfer their learning to other environments. It is possible

that dividing the elementary school day into "math time" and

other "times" and dividing the school day into subject "periods"

at higher levels may contribute to this rigid partitioning which

17
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students adher-e to. Also, as suggested in the Standards (NCTM,

1989), not enough time is spent helping students make the link

between simplified "purely mathematical" situations and their

applied counterparts.

Several researchers (Carraher, Carraher & Schliemann, 1985,

1987; Lava, 1988; Saxe, 1988) describe students who distinguish

either implicitly or explicitly between "school math" and "street

math." The same students who are capable of selecting and

applying appropriate algorithms (often student-derived

algorithms) and obtaining correct solutions in arenas outside of

the mathematic's classroom are less successful when given

comparable or even the same problems in a mathematics classroom

or school setting. The reverse is also true. Many students do

not make the connection between the mathematical concepts and

skills they learn in the classroom and situations in daily life

where those skills might be helpful. While some student believe

there are two separate mathematical arenas (school and daily

life), others believe there is only one, that of the mathematics

classroom which consists of teacher-directed paper and pencil

activities.

A third context-related cue students use to situate

mathematics is the grade level when the mathematics was learned.

The belief that mathematics is a cumulative body of knowledge may

provide an intrinsic motivation for students to seek connections

within the mathematics they are learning and to construct logical

frameworks of knowledge about mathematics. On the other hand,



17

students who believe mathematics is bounded, not only by where it

is learned, but by when it is learned, may have fewer reasons or

internally controlled goals for structuring mathematics. These

students view mathematics as temporal. That is, what was

mathematics last year may not be mathematics this year unless it

is something practiced within this year's mathematics class. A

time-bound view of mathematics may be encouraged by a fragmented

organization of the curriculum and by changes in the "rules" of

mathematics, such as when justifying regrouping in subtraction we

tell younger students that they cannot subtract a smaller number

from a larger number and then do just that in later grades when

working with signed numbers.

Students holding the belief that mathematics is only what is

learned or practiced at a specific grade levq1 may have little

personal ownership of mathematical knowledge. Not only is

mathematics what the teacher controls, but it is what the current

teacher controls. Certain teaching practices, such as insisting

that students solve a specified way this year regardless of the

strategies they may have learned previously, may foster this

time-bound view of mathematics. Borasi (1990) found many

students who have such a cold, impersonal, non-ownership image of

mathematics. Further research is needed to determine if the

manifestation of these time-bound, impersonal beliefs can be

avoided when mathematics instruction, such as that advocated by

the NCTM Standards (1989) and that used in Cognitively Guided

Instruction (Fennema & Carpenter, 1989), which encourage studclits
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to solve problems in their own ways and in a variety of ways.

A final context cue used by students to decide if a task is

mathematical is the presence of manipulatives or tools. Students

who accept the use of manipulatives or tools increase the number

of and the likelihood of using their fallback strategies and

technological strategies to solve routine and novel problems.

The exclusion of manipulatives and tools from mathematics is a

debilitating belief that may be the result of believing that the

action of performing the calculation ig the mathematics. If a

calculator is used then no mathematics is performed even though

the student sets up the calculation, enters the numbers and is

left to make sense of and apply the answer. These latter

processes are not viewed as mathematical. The answer itself,

although a number, loses its power as a cue. The context of the

calculator overshadows the content of the numbers because the use

of the tools is viewed as a form of cheating. To make use of the

calz.lulator (or other tool) circumvents the mathematics.

Summary

We concur with Underhill (1988), "All knowledge is a set of

beliefs." (p.63) Thus, beliefs about mathematics can have a

powerful influence on how students learn and use mathematics. By

systematically identifying, classifying and analyzing the

content- and context-based choices students make about what

mathematics is, we are able to infer compcnents of the students'

belief system. In turn, knowledge about these components may

help us to identify possible causes for debilitating beliefs and
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may suggest ways to enhance positive beliefs and alter or work

around negative beliefs.

2 I /
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